Please consider the associated Links and References (Canvas, On-Line) provided in the class schedule.

Edit Date: October 10, 2025

Main topics:

- Ch 1: Introduction to OS
 - O What is an Operating System? What are the OS goals?
 - Computer System Components (Users, Application Programs, OS, Hardware)
 - OS Usages
 - The Evolution of Operating Systems
 - Serial Processing: No Operating Systems
 - Simple Batch Systems: Monitor
 - Multiprogrammed Batch Systems
 - Time-Sharing Systems
 - Computer-System Architecture and the Advantageous
 - Asymmetric Multiprocessing
 - Symmetric Multiprocessing
 - Advanced OS
 - Distributed OS
 - Real-time OS (Hard and Soft Deadlines)
 - o Computer-System Operation
 - Dual-mode operation
 - o Interrupts (what is it? what types?, Handling)
 - Storage Hierarchy
 - Speed, Cost, Volatility
 - Caching
 - Operating System Components
 - Process Management
 - Memory Management
 - Storage Management
 - File-System Management
 - Mass-Storage Management
 - Caching
 - I/O Systems
 - Protection and Security
 - Virtual Machines (what? idea and benefit)
- Ch 2: Chapter 2: Operating System Services and Structures
 - Operating System Services
 - User interface
 - Program execution
 - I/O operations
 - File-system manipulation
 - Communications
 - Error detection

- Resource allocation
- Accounting
- Protection and security
- System Calls (API, Types)
- Operating System Structure
 - Simple structure (monolithic) MS-DOS

Edit Date: October 10, 2025

- Layered an abstraction
- Microkernel Mach
- Modules Solaris
- Hybrid

• Ch 3: Chapter 3: Processes

- What is a process
- Process Parts
 - Program code (Text Section)
 - Current Activity (Registers)
 - Data (Stack, Data Section, and Heap)
- o Process vs. Program
- Process Management Tasks
- Process States
- Process Control Block
- Context Switch
- Process Scheduling
 - Main goals
 - Process Scheduling Queues
- Types of Scheduler (long-term, medium-term, and short-term)
- Process Creation and Termination (fork() and exit())
- Interprocess Communication (IPC)
 - Shared memory
 - Message passing
- Types of Communication
 - Indirect
 - Direct
- Message passing Types
 - Blocking (Synchronous)
 - Non-blocking (Asynchronous)

• Ch 4: Threads

- Process Characteristics
 - Resource Ownership, Scheduling/Execution
- O What is a thread?
- Single and Multithreaded Processes
- Key Benefits of Threads in comparison with Process

- Benefits of Threads
 - Responsiveness
 - Resource Sharing
 - Economy
 - Scalability
- Single-threaded vs. Multi-threaded Approaches
- o Concurrency vs. Parallelism
 - Types of parallelism
- Thread Types(models) and their advantages and disadvantages
 - User Level Thread (ULT)
 - Kernel Level Thread (KLT) Kernel-supported thread or Lightweight Process

Edit Date: October 10, 2025

- Combined
- Or (Silberschatz)
 - Many-to-One
 - One-to-One
 - Many-to-Many
- Ch 5: CPU Scheduling
 - o What is scheduling? What are the (resource) scheduling objectives?
 - Types of Scheduling?
 - Long-term, medium-term, and short-term (CPU) scheduling
 - Scheduling and Process State Transitions
 - Queuing Diagram for Scheduling
 - CPU burst and IO burst
 - o Preemptive vs. Non-preemptive Scheduling
 - Scheduling Criteria
 - User-oriented
 - Turnaround time, Response time, Waiting time
 - System-oriented
 - CPU utilization, Throughput
 - CPU Scheduling Algorithms
 - First Come First Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Highest Response Ratio Next (HRRN)
 - Round Robin (RR)
 - Virtual Round Robin (VRR)
 - Multilevel Feedback Queue (MLFQ)
 - Priority Scheduling (PR)
 - Multilevel Queue
 - Scheduling Algorithm Evaluation Approaches
 - Deterministic Modeling
 - Queueing Models
 - Simulations

Review Topics_Exam1_Ch1-5.Docx

Implementation

Edit Date: October 10, 2025